
Placed in the Public Domain 1992 by Alex Meyer.

NeXTstep Measurement Kit:
Recorders

The NeXTstep Measurement Kit consists of two modules.    The first, Recorders, is 
discussed herein.    The second, Historian, is discussed in its own documentation.   



Together, they provide software developers with the ability to measure and view 
data about how users interact with user interface items.    These capabilities can 
be added to existing source code with a minimum of effort.

Recorders is intended to be used by programmers, not end users.    Thus, this 
documentation assumes familiarity with object-oriented programming, the NeXT 
Application Kit, and the Interface Builder.

Overview
The NeXTstep Measurement Kit (NMK) extends the functionality of Buttons, 
Sliders, Scrollers, and Menus to keep track of usage information.    Time spent 



manipulating an item, as well as time between uses, is measured.    The number 
of invocations (hits) is also logged.    For Sliders and Scrollers, the package keeps 
a histogram which shows where, within its range of values, the indicator has 
been set most frequently.    Buttons also keep track of when the user clicks within 
a button and then drags outside the button in order to cancel the click.    NeXT 
Scrollers consist of many parts and hits in each part are counted separately.

NMK is written in Objective-C and is designed to fit seamlessly into almost any 
application written in accordance with the NeXT Application Kit .    Specifically, 
NMK consists of: custom classes for database management; a recording subclass 
of Application; subclasses that substitute for ButtonCell, SliderCell, Scroller, and 
MenuCell; and custom accounting classes for the substitutes.

In order fully to understand the role of NMK, one should work both with Recorders



and Historian on a simple test application.    A few cycles of recording followed by 
viewing should help to familiarize one with the whole created by the interaction 
of these two halves.

Installation
This documentation will discuss how to add NMK to an application developed 
using Interface Builder.    It is assumed that any users writing NeXT applications 
without the Interface Builder will already have the background required to adapt 
the following instructions to their particular situations.

The first step in the process is to add the necessary NMK source files to the 



project.    This is done using the project inspector.    A project containing these 
files is shown below:

proj.eps ¬

In addition to the class files shown above, the file "structs.h" should be added as 
".h (other)".

Interface Builder must then be told about each of the new subclasses that has 
been added to the project.    This is done in the classes window.    To add a class 
properly, one must do the following.    First, click on the class's superclass (parent 
class) so that only it is highlighted.    Next, drag to "Subclass" in the "Operations" 
pull-down menu.    Edit the text field in the lower right so that it shows the name 
of the new subclass and hit return.    Next, drag to "Parse" in the "Operations" 



menu and answer "OK" to the alert box which appears.    The subclasses of Object
are shown installed below:

classes.eps ¬

The following subclasses must be installed:

Name: Superclass:
RButtonVars Object
RMenuVars Object
RScrollerVars Object
RSliderVars Object
TranscriptLinker Object
TranscriptManager Object



ButtonCellCover ButtonCell
MenuCellCover MenuCell
SliderCellCover SliderCell
RApplication Application
ScrollerCover Control (because Scroller isn't shown)

Finally, the owner of the main nib file must be changed from "Application" to 
"RApplication".    This is done using the attributes inspector for the "File's Owner" 
icon of the appropriate file.    Once this has been completed, the project can be 
saved and built using the "Make" command.

Classes



TranscriptManager & TranscriptLinker

The two subclasses of Object, TranscriptManager and TranscriptLinker, implement
the internal database and are probably not of general interest.    
TranscriptManager handles the transcript files (with the .trnscrpt suffix) which 
store recorded data for each application between runs.    Transcript files have the 
following icon.

trnscrpt.tiff ¬

These files are currently stored in the user's home directory, but by editing the 
file TranscriptManager.m, the path may be customized.    TranscriptLinker takes 
care of the details involved with keeping records for many user interface items 



accurate across multiple invocations.

RApplication

This subclass of Application extends the functionality of the Application class in 
two ways.    First, it sends "poseAs:" messages which enable the "...Cover" classes
to substitute for their superclasses.    Thus, all messages intended for an object of
class ButtonCell will actually go to an object of class ButtonCellCover.    This may 
cause problems with applications which already rely on "poseAs:" messages for 
other features.    This, however, is not standard practice except in some 
debugging circumstances.    Second, RApplication handles the creation of a 
TranscriptLinker (which creates a TranscriptManager) and sends it the proper 
initialization and termination messages.



ButtonCellCover & RButtonVars

ButtonCellCover overrides some of the standard functionality of the ButtonCell 
class, which is used to implement pushbuttons, check boxes, and radio buttons.    
In order to do so, ButtonCellCover declares no new instance variables and no new
public methods.    RButtonVars handles the storage and maintenance of recorded 
data for ButtonCellCover.    There is one instance of RButtonVars for each 
ButtonCellCover, and RButtonVars communicates with TranscriptLinker.    Each 
ButtonCellCover is identified by a "key" which consists of any text it contains, the
value of its "tag", and the rectangle it occupies.    ButtonCellCover operates 
through the "trackMouse:inRect:ofView:" method.    Each time this method is 
invoked, the statistic "numHits" is incremented.    Based on the return value of 



the method, "numCancel" may also be incremented.    In addition, the number of 
seconds spent executing the method is recorded in "timeIn".    The time between 
the end of the last invocation and the beginning of the current one is added to 
"timeBetween", unless at the first invocation of the current run.    All of these 
statistic variables are maintained by RButtonVars and can be inspected using 
Historian.

SliderCellCover & RSliderVars

SliderCellCover and RSliderVars work analogously to ButtonCellCover and 
RButtonVars.    The "key" for a SliderCellCover is similar to that for 
ButtonCellCover, but is based on the name associated with the Slider object.    
Note that there is no "numCancel" statistic for Sliders.    An additional statistic 



"histogram" keeps track of value information as a ten-part counter .    Specifically,
every time the "trackMouse:inRect:ofView:" method returns, the value of the 
slider relative to its minimum and maximum values is calculated as an integer 
between 0 and 9.    This integer is used to determine which part of the histogram 
to increment.    The histogram is shown graphically in Historian.

ScrollerCover & RScrollerVars

ScrollerCover poses as Scroller, which is usually used for showing relatively 
smaller views of large documents.    Since Scrollers act as complicated Sliders, 
ScrollerCover adds to the features of SliderCellCover.    A Scroller consists of a 
knob, two buttons with arrows, and what is known as a knob slot or jump area.    
When one of the buttons is Alternate-clicked, the buttons serve to scroll by a 



page, rather than a line.    Scrollers generally do not have names or text 
associated with them and are usually identified in the "key" by their orientation: 
horizontal or vertical.    In addition to measuring all the statistics measured by 
RSliderVars, RScrollerVars keeps track of the following hit counts: "numKNOB", 
"numDECPAGE", "numINCPAGE", "numDECLINE", "numINCLINE", and 
"numKNOBSLOT".    These are based on the values returned by "hitPart".

MenuCellCover & RMenuVars

A MenuCell is essentially a ButtonCell which appears in a Menu.    Thus, there is 
virtually no difference between the behaviors of MenuCellCover and RMenuVars, 
and ButtonCellCover and RButtonVars.



Runtime Behavior
NMK utilizes what is known as a lazy approach to record-keeping.    User interface 
items which are never invoked are never recorded--no "R...Vars" object is created
and they will not appear in Historian.    Once an interface element is invoked, its 
statistics will be part of the transcript file forever.    If an application contains a 
help system, the interface objects in the help system will not be recorded until 
the first time a user interacts with the help system, after which time the records 
will be visible in Historian.    If the application is run again and the help system is 
not used, the records in the transcript file will remain unchanged and will not be 
removed.



The transcript file is updated in the "free" instance method of RApplication and 
thus only when an application terminates normally.

Recorders.rtfd -- user manual for recording interface items
NeXTstep Measurement Kit
by Alex Meyer <ameyer@phoenix.Princeton.EDU>
for computer science senior thesis
27 April 1992 -- created
28 April 1992 -- first draft completed
4 May 1992 -- first release


